Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 842
Filtrar
1.
Sci Total Environ ; 924: 171529, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38453065

RESUMO

Soil microbial communities are essential to biogeochemical cycles. However, the responses of microorganisms in volcanic soil with high heavy metal levels remain poorly understood. Here, two areas with high levels of cadmium (Cd) from the same volcano were investigated to determine their archaeal composition and assembly. In this study, the Cd concentrations (0.32-0.38 mg/ kg) in the volcanic soils exceeded the standard risk screening values (GB15618-2018) and correlated with archaeal communities strongly (P < 0.05). Moreover, the area with elevated levels of Cd (periphery) exhibited a greater diversity of archaeal species, albeit with reduced archaeal activity, compared to the area with lower levels of Cd (center). Besides, stochastic processes mainly governed the archaeal communities. Furthermore, the co-occurrence network was simplest in the periphery. The proportion of positive links between taxa increased positively with Cd concentration. Moreover, four keystone taxa (all from the family Nitrososphaeraceae) were identified from the archaeal networks. In its entirety, this study has expanded our comprehension of the variations of soil archaeal communities in volcanic areas with elevated cadmium levels and serves as a point of reference for the agricultural development of volcanic soils in China.


Assuntos
Metais Pesados , Poluentes do Solo , Archaea/fisiologia , Cádmio , Solo/química , Microbiologia do Solo
2.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37698885

RESUMO

Ammonia oxidizers are key players in the global nitrogen cycle and are responsible for the oxidation of ammonia to nitrite, which is further oxidized to nitrate by other microorganisms. Their activity can lead to adverse effects on some human-impacted environments, including water pollution through leaching of nitrate and emissions of the greenhouse gas nitrous oxide (N2O). Ammonia monooxygenase (AMO) is the key enzyme in microbial ammonia oxidation and shared by all groups of aerobic ammonia oxidizers. The AMO has not been purified in an active form, and much of what is known about its potential structure and function comes from studies on its interactions with inhibitors. The archaeal AMO is less well studied as ammonia oxidizing archaea were discovered much more recently than their bacterial counterparts. The inhibition of ammonia oxidation by aliphatic alcohols (C1-C8) using the model terrestrial ammonia oxidizing archaeon 'Candidatus Nitrosocosmicus franklandus' C13 and the ammonia oxidizing bacterium Nitrosomonas europaea was examined in order to expand knowledge about the range of inhibitors of ammonia oxidizers. Methanol was the most potent specific inhibitor of the AMO in both ammonia oxidizers, with half-maximal inhibitory concentrations (IC50) of 0.19 and 0.31 mM, respectively. The inhibition was AMO-specific in 'Ca. N. franklandus' C13 in the presence of C1-C2 alcohols, and in N. europaea in the presence of C1-C3 alcohols. Higher chain-length alcohols caused non-specific inhibition and also inhibited hydroxylamine oxidation. Ethanol was tolerated by 'Ca. N. franklandus' C13 at a higher threshold concentration than other chain-length alcohols, with 80 mM ethanol being required for complete inhibition of ammonia oxidation.


Assuntos
Amônia , Archaea , Humanos , Archaea/fisiologia , Nitratos , Bactérias , Oxirredução , Etanol , Nitrificação
3.
Nat Commun ; 14(1): 1799, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002226

RESUMO

Episodic ataxias (EAs) are rare neurological conditions affecting the nervous system and typically leading to motor impairment. EA6 is linked to the mutation of a highly conserved proline into an arginine in the glutamate transporter EAAT1. In vitro studies showed that this mutation leads to a reduction in the substrates transport and an increase in the anion conductance. It was hypothesised that the structural basis of these opposed functional effects might be the straightening of transmembrane helix 5, which is kinked in the wild-type protein. In this study, we present the functional and structural implications of the mutation P208R in the archaeal homologue of glutamate transporters GltTk. We show that also in GltTk the P208R mutation leads to reduced aspartate transport activity and increased anion conductance, however a cryo-EM structure reveals that the kink is preserved. The arginine side chain of the mutant points towards the lipidic environment, where it may engage in interactions with the phospholipids, thereby potentially interfering with the transport cycle and contributing to stabilisation of an anion conducting state.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Proteínas Arqueais , Ataxia , Humanos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Arginina/genética , Ataxia/genética , Transportador 1 de Aminoácido Excitatório/genética , Mutação , Archaea/genética , Archaea/fisiologia , Proteínas Arqueais/genética , Proteínas Arqueais/fisiologia
4.
Nat Rev Gastroenterol Hepatol ; 19(12): 805-813, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36050385

RESUMO

The human microbiome is strongly interwoven with human health and disease. Besides bacteria, viruses and eukaryotes, numerous archaea are located in the human gastrointestinal tract and are responsible for methane production, which can be measured in clinical methane breath analyses. Methane is an important readout for various diseases, including intestinal methanogen overgrowth. Notably, the archaea responsible for methane production are largely overlooked in human microbiome studies due to their non-bacterial biology and resulting detection issues. As such, their importance for health and disease remains largely unclear to date, in particular as not a single archaeal representative has been deemed to be pathogenic. In this Perspective, we discuss the current knowledge on the clinical relevance of methanogenic archaea. We explain the archaeal unique response to antibiotics and their negative and positive effects on human physiology, and present the current understanding of the use of methane as a diagnostic marker.


Assuntos
Archaea , Euryarchaeota , Humanos , Archaea/fisiologia , Trato Gastrointestinal/microbiologia , Metano , Bactérias
5.
FEMS Microbiol Rev ; 46(5)2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35640890

RESUMO

The microbial world represents a phenomenal diversity of microorganisms from different kingdoms of life, which occupy an impressive set of ecological niches. Most, if not all, microorganisms once colonize a surface develop architecturally complex surface-adhered communities, which we refer to as biofilms. They are embedded in polymeric structural scaffolds and serve as a dynamic milieu for intercellular communication through physical and chemical signalling. Deciphering microbial ecology of biofilms in various natural or engineered settings has revealed coexistence of microorganisms from all domains of life, including Bacteria, Archaea, and Eukarya. The coexistence of these dynamic microbes is not arbitrary, as a highly coordinated architectural setup and physiological complexity show ecological interdependence and myriads of underlying interactions. In this review, we describe how species from different kingdoms interact in biofilms and discuss the functional consequences of such interactions. We highlight metabolic advances of collaboration among species from different kingdoms, and advocate that these interactions are of great importance and need to be addressed in future research. Since trans-kingdom biofilms impact diverse contexts, ranging from complicated infections to efficient growth of plants, future knowledge within this field will be beneficial for medical microbiology, biotechnology, and our general understanding of microbial life in nature.


Assuntos
Archaea , Biofilmes , Archaea/fisiologia , Bactérias/metabolismo , Ecossistema , Plantas , Percepção de Quorum
6.
Nat Rev Microbiol ; 20(6): 351-364, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34992260

RESUMO

CRISPR-Cas systems of bacteria and archaea comprise chromosomal loci with typical repetitive clusters and associated genes encoding a range of Cas proteins. Adaptation of CRISPR arrays occurs when virus-derived and plasmid-derived sequences are integrated as new CRISPR spacers. Cas proteins use CRISPR-derived RNA guides to specifically recognize and cleave nucleic acids of invading mobile genetic elements. Apart from this role as an adaptive immune system, some CRISPR-associated nucleases are hijacked by mobile genetic elements: viruses use them to attack their prokaryotic hosts, and transposons have adopted CRISPR systems for guided transposition. In addition, some CRISPR-Cas systems control the expression of genes involved in bacterial physiology and virulence. Moreover, pathogenic bacteria may use their Cas nuclease activity indirectly to evade the human immune system or directly to invade the nucleus and damage the chromosomal DNA of infected human cells. Thus, the evolutionary arms race has led to the expansion of exciting variations in CRISPR mechanisms and functionalities. In this Review, we explore the latest insights into the diverse functions of CRISPR-Cas systems beyond adaptive immunity and discuss the implications for the development of CRISPR-based applications.


Assuntos
Sistemas CRISPR-Cas , Vírus , Archaea/fisiologia , Bactérias , Fenômenos Fisiológicos Bacterianos , Evolução Biológica , Sistemas CRISPR-Cas/genética , Humanos , Vírus/genética
7.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983838

RESUMO

Living systems propagate by undergoing rounds of cell growth and division. Cell division is at heart a physical process that requires mechanical forces, usually exerted by assemblies of cytoskeletal polymers. Here we developed a physical model for the ESCRT-III-mediated division of archaeal cells, which despite their structural simplicity share machinery and evolutionary origins with eukaryotes. By comparing the dynamics of simulations with data collected from live cell imaging experiments, we propose that this branch of life uses a previously unidentified division mechanism. Active changes in the curvature of elastic cytoskeletal filaments can lead to filament perversions and supercoiling, to drive ring constriction and deform the overlying membrane. Abscission is then completed following filament disassembly. The model was also used to explore how different adenosine triphosphate (ATP)-driven processes that govern the way the structure of the filament is changed likely impact the robustness and symmetry of the resulting division. Comparisons between midcell constriction dynamics in simulations and experiments reveal a good agreement with the process when changes in curvature are implemented at random positions along the filament, supporting this as a possible mechanism of ESCRT-III-dependent division in this system. Beyond archaea, this study pinpoints a general mechanism of cytokinesis based on dynamic coupling between a coiling filament and the membrane.


Assuntos
Archaea/fisiologia , Divisão Celular/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo , Citocinese , Citoesqueleto/metabolismo , Sulfolobus acidocaldarius/fisiologia
8.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35022241

RESUMO

Decades of culture-independent analyses have resulted in proposals of many tentative archaeal phyla with no cultivable representative. Members of DPANN (an acronym of the names of the first included phyla Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanohaloarchaeota, and Nanoarchaeota), an archaeal superphylum composed of at least 10 of these tentative phyla, are generally considered obligate symbionts dependent on other microorganisms. While many draft/complete genome sequences of DPANN archaea are available and their biological functions have been considerably predicted, only a few examples of their successful laboratory cultivation have been reported, limiting our knowledge of their symbiotic lifestyles. Here, we investigated physiology, morphology, and host specificity of an archaeon of the phylum "Candidatus Micrarchaeota" (ARM-1) belonging to the DPANN superphylum by cultivation. We constructed a stable coculture system composed of ARM-1 and its original host Metallosphaera sp. AS-7 belonging to the order Sulfolobales Further host-switching experiments confirmed that ARM-1 grew on five different archaeal species from three genera-Metallosphaera, Acidianus, and Saccharolobus-originating from geologically distinct hot, acidic environments. The results suggested the existence of DPANN archaea that can grow by relying on a range of hosts. Genomic analyses showed inferred metabolic capabilities, common/unique genetic contents of ARM-1 among cultivated micrarchaeal representatives, and the possibility of horizontal gene transfer between ARM-1 and members of the order Sulfolobales Our report sheds light on the symbiotic lifestyles of DPANN archaea and will contribute to the elucidation of their biological/ecological functions.


Assuntos
Archaea/genética , Archaea/fisiologia , Genoma Arqueal , Simbiose/genética , Simbiose/fisiologia , Archaea/classificação , Archaea/citologia , Técnicas de Cocultura , Evolução Molecular , Transferência Genética Horizontal , Genômica , Nanoarchaeota , Filogenia
9.
PLoS Biol ; 20(1): e3001514, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025885

RESUMO

Prokaryotes have numerous mobile genetic elements (MGEs) that mediate horizontal gene transfer (HGT) between cells. These elements can be costly, even deadly, and cells use numerous defense systems to filter, control, or inactivate them. Recent studies have shown that prophages, conjugative elements, their parasites (phage satellites and mobilizable elements), and other poorly described MGEs encode defense systems homologous to those of bacteria. These constitute a significant fraction of the repertoire of cellular defense genes. As components of MGEs, these defense systems have presumably evolved to provide them, not the cell, adaptive functions. While the interests of the host and MGEs are aligned when they face a common threat such as an infection by a virulent phage, defensive functions carried by MGEs might also play more selfish roles to fend off other antagonistic MGEs or to ensure their maintenance in the cell. MGEs are eventually lost from the surviving host genomes by mutational processes and their defense systems can be co-opted when they provide an advantage to the cell. The abundance of defense systems in MGEs thus sheds new light on the role, effect, and fate of the so-called "cellular defense systems," whereby they are not only merely microbial defensive weapons in a 2-partner arms race, but also tools of intragenomic conflict between multiple genetic elements with divergent interests that shape cell fate and gene flow at the population level.


Assuntos
Archaea/genética , Bactérias/genética , Sequências Repetitivas Dispersas/genética , Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Bacteriófagos , Transferência Genética Horizontal , Prófagos
11.
Nat Rev Microbiol ; 20(1): 5-19, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34316046

RESUMO

Electroactive microorganisms markedly affect many environments in which they establish outer-surface electrical contacts with other cells and minerals or reduce soluble extracellular redox-active molecules such as flavins and humic substances. A growing body of research emphasizes their broad phylogenetic diversity and shows that these microorganisms have key roles in multiple biogeochemical cycles, as well as the microbiome of the gut, anaerobic waste digesters and metal corrosion. Diverse bacteria and archaea have independently evolved cytochrome-based strategies for electron exchange between the outer cell surface and the cell interior, but cytochrome-free mechanisms are also prevalent. Electrically conductive protein filaments, soluble electron shuttles and non-biological conductive materials can substantially extend the electronic reach of microorganisms beyond the surface of the cell. The growing appreciation of the diversity of electroactive microorganisms and their unique electronic capabilities is leading to a broad range of applications.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Transporte de Elétrons , Filogenia , Archaea/classificação , Bactérias/classificação , Citocromos , Oxirredução
12.
Bioprocess Biosyst Eng ; 45(1): 75-85, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34564754

RESUMO

Hyperthermophilic microorganisms play a key role in the hyper-thermophilic composting (HTC) technique. However, little information is available about the hyperthermophilic microorganisms prevalent in HTC systems, except for the Calditerricola satsumensis, Calditerricola yamamurae, and Thermaerobacter. To obtain effective hyper-thermophilic microorganisms, a continuous thermo-acclimation of the suitable thermophilic microorganisms was demonstrated in this study. Bacillus thermoamylovorans with high-temperature endurance (70 °C) were newly isolated from sludge composting, and an adequate slow heating rate (2 °C per cycle) was applied to further improve its thermostability. Finally, a strain with a maximum growth temperature of 80 °C was obtained. Moreover, structural and hydrophobic changes in cell proteins, the special amino acid content ratio, and the membrane permeability of the thermophilic bacterium after thermo-acclimation were evaluated for improved thermostability. In addition, the acclimated hyperthermophilic bacterium was further inoculated into the HTC system, and an excellent performance with a maximum operating temperature of 82 °C was observed.


Assuntos
Archaea/fisiologia , Fermentação , Fenômenos Fisiológicos Bacterianos , Temperatura Alta
13.
ISME J ; 16(3): 750-763, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34584214

RESUMO

The microbial community composition and biogeochemical dynamics of coastal permeable (sand) sediments differs from cohesive (mud) sediments. Tide- and wave-driven hydrodynamic disturbance causes spatiotemporal variations in oxygen levels, which select for microbial generalists and disrupt redox cascades. In this work, we profiled microbial communities and biogeochemical dynamics in sediment profiles from three sites varying in their exposure to hydrodynamic disturbance. Strong variations in sediment geochemistry, biogeochemical activities, and microbial abundance, composition, and capabilities were observed between the sites. Most of these variations, except for microbial abundance and diversity, significantly correlated with the relative disturbance level of each sample. In line with previous findings, metabolically flexible habitat generalists (e.g., Flavobacteriaceae, Woeseaiceae, Rhodobacteraceae) dominated in all samples. However, we present evidence that aerobic specialists such as ammonia-oxidizing archaea (Nitrosopumilaceae) were more abundant and active in more disturbed samples, whereas bacteria capable of sulfate reduction (e.g., uncultured Desulfobacterales), dissimilatory nitrate reduction to ammonium (DNRA; e.g., Ignavibacteriaceae), and sulfide-dependent chemolithoautotrophy (e.g., Sulfurovaceae) were enriched and active in less disturbed samples. These findings are supported by insights from nine deeply sequenced metagenomes and 169 derived metagenome-assembled genomes. Altogether, these findings suggest that hydrodynamic disturbance is a critical factor controlling microbial community assembly and biogeochemical processes in coastal sediments. Moreover, they strengthen our understanding of the relationships between microbial composition and biogeochemical processes in these unique environments.


Assuntos
Archaea , Bactérias , Sedimentos Geológicos , Microbiota , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Archaea/fisiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Sedimentos Geológicos/microbiologia , Hidrodinâmica
14.
Nat Microbiol ; 6(11): 1443-1454, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34702978

RESUMO

Commonly used 16S rRNA gene primers do not detect the full range of archaeal diversity present in the vertebrate gut. As a result, several questions regarding the archaeal component of the gut microbiota remain, including which Archaea are host-associated, the specificities of such associations and the major factors influencing archaeal diversity. Using 16S rRNA gene amplicon sequencing with primers that specifically target Archaea, we obtained sufficient sequence data from 185 gastrointestinal samples collected from 110 vertebrate species that span five taxonomic classes (Mammalia, Aves, Reptilia, Amphibia and Actinopterygii), of which the majority were wild. We provide evidence for previously undescribed Archaea-host associations, including Bathyarchaeia and Methanothermobacter, the latter of which was prevalent among Aves and relatively abundant in species with higher body temperatures, although this association could not be decoupled from host phylogeny. Host phylogeny explained archaeal diversity more strongly than diet, while specific taxa were associated with both factors, and cophylogeny was significant and strongest for mammalian herbivores. Methanobacteria was the only class predicted to be present in the last common ancestors of mammals and all host species. Further analysis indicated that Archaea-Bacteria interactions have a limited effect on archaeal diversity. These findings expand our current understanding of Archaea-vertebrate associations.


Assuntos
Archaea/genética , Archaea/fisiologia , Microbioma Gastrointestinal , Filogenia , Vertebrados/classificação , Vertebrados/microbiologia , Animais , Archaea/classificação , Archaea/isolamento & purificação , Biodiversidade , Aves/microbiologia , DNA Arqueal/genética , Especificidade de Hospedeiro , Humanos , RNA Ribossômico 16S/genética , Répteis/microbiologia , Análise de Sequência de DNA , Vertebrados/genética
15.
Commun Biol ; 4(1): 1217, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686760

RESUMO

Recent studies on marine heat waves describe water temperature anomalies causing changes in food web structure, bloom dynamics, biodiversity loss, and increased plant and animal mortality. However, little information is available on how water temperature anomalies impact prokaryotes (bacteria and archaea) inhabiting ocean waters. This is a nontrivial omission given their integral roles in driving major biogeochemical fluxes that influence ocean productivity and the climate system. Here we present a time-resolved study on the impact of a large-scale warm water surface anomaly in the northeast subarctic Pacific Ocean, colloquially known as the Blob, on prokaryotic community compositions. Multivariate statistical analyses identified significant depth- and season-dependent trends that were accentuated during the Blob. Moreover, network and indicator analyses identified shifts in specific prokaryotic assemblages from typically particle-associated before the Blob to taxa considered free-living and chemoautotrophic during the Blob, with potential implications for primary production and organic carbon conversion and export.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Mudança Climática , Temperatura Alta/efeitos adversos , Água do Mar/microbiologia , Oceano Pacífico , Estações do Ano
17.
BMC Microbiol ; 21(1): 246, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34521348

RESUMO

BACKGROUND: Saline and alkaline stresses damages the health of soil systems. Meanwhile, little is known about how saline or alkaline stress affects soil nitrifier and denitrifier communities. Therefore, we compared the responses of gene-based nitrifier and denitrifier communities to chloride (CS), sulfate (SS), and alkaline (AS) stresses with those in a no-stress control (CK) in pots with a calcareous desert soil. RESULTS: Compared with CK, saline and alkaline stress decreased potential nitrification rate (PNR) and NO3-N; increased pH, salinity, water content, and NH4-N; and decreased copy numbers of amoA-AOA and amoA-AOB genes but increased those of denitrifier nirS and nosZ genes. Copies of nirK increased in SS and AS but decreased in CS. There were more copies of amoA-AOB than of amoA-AOA and of nirS than of nirK or nosZ. Compared with CK, SS and AS decreased operational taxonomic units (OTUs) of amoA-AOB but increased those of nirS and nosZ, whereas CS decreased nirK OTUs but increased those of nosZ. The numbers of OTUs and amoA-AOB genes were greater than those of amoA-AOA. There were positive linear relations between PNR and amoA-AOA and amoA-AOB copies. Compared with CK, the Chao 1 index of amoA-AOA and amoA-AOB decreased in AS, that of nirK increased in CS and SS, but that of nirS and nosZ increased in all treatments. The Shannon index of amoA-AOB decreased but that of nirS increased in CS and SS, whereas the index of nirK decreased in all treatments. Saline and alkaline stress greatly affected the structure of nitrifier and denitrifier communities and decreased potential biomarkers of nirS-type; however, AS increased those of nirK- and nosZ-type, and SS decreased those of nosZ-type. Soil water content, pH, and salinity were important in shaping amoA-AOA and denitrifier communities, whereas soil water and pH were important to amoA-AOB communities. CONCLUSION: These results indicate that the nitrifier and denitrifier communities respond to saline and alkaline stresses conditions. Communities of amoA-AOA and amoA-AOB contribute to nitrification in alluvial gray desert soil, and those of nirS are more important in denitrification than those of nirK or nosZ.


Assuntos
Álcalis/metabolismo , Microbiota/genética , Nitrificação/genética , Estresse Salino , Microbiologia do Solo , Solo/química , Archaea/genética , Archaea/fisiologia , Clima Desértico , Microbiota/fisiologia
18.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200063

RESUMO

The modification of archaeal lipid bilayer properties by the insertion of apolar molecules in the lipid bilayer midplane has been proposed to support cell membrane adaptation to extreme environmental conditions of temperature and hydrostatic pressure. In this work, we characterize the insertion effects of the apolar polyisoprenoid squalane on the permeability and fluidity of archaeal model membrane bilayers, composed of lipid analogues. We have monitored large molecule and proton permeability and Laurdan generalized polarization from lipid vesicles as a function of temperature and hydrostatic pressure. Even at low concentration, squalane (1 mol%) is able to enhance solute permeation by increasing membrane fluidity, but at the same time, to decrease proton permeability of the lipid bilayer. The squalane physicochemical impact on membrane properties are congruent with a possible role of apolar intercalants on the adaptation of Archaea to extreme conditions. In addition, such intercalant might be used to cheaply create or modify chemically resistant liposomes (archeaosomes) for drug delivery.


Assuntos
Archaea/fisiologia , Membrana Celular/fisiologia , Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo , Fluidez de Membrana , Esqualeno/análogos & derivados , Archaea/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Esqualeno/farmacologia , Temperatura
19.
Commun Biol ; 4(1): 653, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34079059

RESUMO

It has been proposed that adaptation to high temperature involved the synthesis of monolayer-forming ether phospholipids. Recently, a novel membrane architecture was proposed to explain the membrane stability in polyextremophiles unable to synthesize such lipids, in which apolar polyisoprenoids populate the bilayer midplane and modify its physico-chemistry, extending its stability domain. Here, we have studied the effect of the apolar polyisoprenoid squalane on a model membrane analogue using neutron diffraction, SAXS and fluorescence spectroscopy. We show that squalane resides inside the bilayer midplane, extends its stability domain, reduces its permeability to protons but increases that of water, and induces a negative curvature in the membrane, allowing the transition to novel non-lamellar phases. This membrane architecture can be transposed to early membranes and could help explain their emergence and temperature tolerance if life originated near hydrothermal vents. Transposed to the archaeal bilayer, this membrane architecture could explain the tolerance to high temperature in hyperthermophiles which grow at temperatures over 100 °C while having a membrane bilayer. The induction of a negative curvature to the membrane could also facilitate crucial cell functions that require high bending membranes.


Assuntos
Archaea/química , Archaea/fisiologia , Extremófilos/química , Extremófilos/fisiologia , Lipídeos de Membrana/química , Aclimatação/fisiologia , Ambientes Extremos , Temperatura Alta , Bicamadas Lipídicas/química , Fluidez de Membrana , Lipídeos de Membrana/síntese química , Modelos Moleculares , Estrutura Molecular , Difração de Nêutrons , Permeabilidade , Pressão , Espalhamento a Baixo Ângulo , Espectrometria de Fluorescência , Esqualeno/análogos & derivados , Esqualeno/química , Terpenos/química , Difração de Raios X
20.
PLoS One ; 16(6): e0253233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34129622

RESUMO

The spatial and temporal distribution of the archaeal community and its driving factors in the sediments of large-scale regulated rivers, especially in rivers with cascade hydropower development rivers, remain poorly understood. Quantitative PCR (qPCR) and Illumina MiSeq sequencing of the 16S rRNA archaeal gene were used to comprehensively investigate the spatiotemporal diversity and structure of archaeal community in the sediments of the Lancang River cascade reservoirs (LRCR). The archaeal abundance ranged from 5.11×104 to 1.03×106 16S rRNA gene copies per gram dry sediment and presented no temporal variation. The richness, diversity, and community structure of the archaeal community illustrated a drastic spatial change. Thaumarchaeota and Euryyarchaeota were the dominant archaeal phyla in the sediments of the cascade rivers, and Bathyarchaeota was also an advantage in the sediments. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and carbon and nitrogen metabolism in downstream reservoirs, indicating that anthropogenic pollution discharges might act as the dominant selective force to alter the archaeal communities. Nitrate and C/N ratio were found to play important roles in the formation of the archaeal community composition. In addition, the sediment archaeal community structure was also closely related to the age of the cascade reservoir and hydraulic retention time (HRT). This finding indicates that the engineering factors of the reservoir might be the greatest contributor to the archaeal community structure in the LRCR.


Assuntos
Archaea/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Rios/microbiologia , Archaea/genética , Archaea/metabolismo , Archaea/fisiologia , China , DNA Arqueal/genética , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...